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0 PROJECT DESCRIPTION

Grant No. AFOSR 81-0052 is to study the numerical and analytic properties

C and solution of implicit systems of differential equations in the form,

A(t)x'(t) + B(x(t)) = f(t) (1)

and their application to circuit and control problems. Here x is a vector

state variable, A is a singular matrix and B is a (possibly) nonlinear vector

valued function of the vector variable x.

PUBLICATIONS

During the report period the following papers were written as part of

. this research effort;

P1. S. L. Campbell, Numerical procedures for analyzing nonlinear semistate

equations, Proceedings Fifth International Symposium on the Mathematical
--J Theory of Networks and Systems, 1981, 22-27.

P2. S. L. Campbell, Consistent initial conditions for singular nonlinear
2systems, Circuits Systems and Signal Processing 2(1983), 45-55.

P3. S. L. Campbell, Linear time varying singular systems of differential
equations, 1981 (appears as a report and as Chapter 5 of [C3]).

P4. S. L. Campbell, Nonlinear singular systems of differential equations,
1981 (appears as a report and as Chapter 6 of [C31).

P5. S. L. Campbell, The Drazin inverse of an operator, Recent Applications
of Generalized Inverses, Pitman Publishing Co., 1982, edited by
S. L. Campbell, 250-260.
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In what follows [Pi] denotes one of the above papers, [Ci] denotes

another work of the proposer, and [Ri] denotes the work of other researchers.

The [Ci] and [Ri] papers are listed at the end of this report.

(C.)

r1
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RESULTS

Subsequent to writing the proposal for this contract, but prior to

1 January 81, the proposer showed [C4] that for a connected circuit made up

of linear capacitors, (non-linear) current controlled resistors, and in-

dependent voltage sources, that the singular behavior of (1) was contained

in a singular subsystem of the form

Ak + Bx = f (2)

where A, B were constant matrices. This subsystem was not decoupled from

the remaining nonsingular system. Nonetheless it was possible to use the

theory for (2) to analytic advantage. Subsequently in [P1], the numerical

implementation of the procedure was discussed.

Let V xB at x(t ) be the Jacobian (vector gradient) of B(x). Then the

index of (1) at x(to) [P2] is the index of nilpotency of (XA + V xB)-V xB.

The assumption that such a parameter X exists is not only quite mild but

necessary if numerical methods, such as backwards differences, are to be

used on (1). For (2), XA+B being invertible is equivalent to solutions,

when they exist, being uniquely determined by consistent initial conditions

[Cl], [C2]. In any case the index is independent of X [C2]. If the system

(1) is rewritten as an implicit or constrained system,

k = H(x,y) (3a)

0 = G(x,y) (3b)

then the index being greater than one is equivalent to V G being singulary

[P2]. The vast bulk of the theory of nonlinear singular systems is

devoted to the index one case. In particular most numerical methods assume

the system is index one [R8]. Yet many of the circuits not admitting state
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equations have operating points where the index is greater than one and

it is at these places that jump behavior may occur. Even for (2), the

index may be greater than one if operational amplifiers are present [R19].

One major thrust of this research effort is to understand these higher index

cases.

In [P2), the consistent initial conditions to (1), that is those not

admitting impulsive behavior, were characterized. It was also shown that

for index > 3 systems that this characterization was different from and

corrected previously published results by other researchers in the circuit

t theory literature [R14]. An example was given to show these other character-

izations were, in fact, incorrect. An important consequence of this paper

is that if the index is greater than or equal to three at a point then a

numerical method based on linearization such as an Eulers, may not only give

a poor approximation but may actually jump from one solution to another.

Singular systems often arise as reduced order models in singular perturbation

problems. In fact, one way to justify the distributional or impulsive solutions

to (1) is through singular perturbation arguments [03], [R3, R7]. The results

of [P5] may be used in determining asytaptotic expansions [C31 for linear

systems with (2) as the reduced order model.

In [P7] it is shown that if the quadratic control problem has process

i - Ax +Bu, x(O) -=x, t f specified, (4a)

an c stJ[x,u] - I t xT px + u TRu dt 
(4b)

t
0

with R singular (i.e. a cheap control problem) then the index k of the Euler-

Lagrange equations for (4) which take the form (2), is actually 2r + 1 where

the control problem (4) is what is classically called singular of order r
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and of distributional order k-l. The implications of [P2], [P3], [P4] for

higher order singular arcs in nonlinear cheap control problems remains to

be determined but appears interesting.

If R in (4b) is invertible, then matrix Riccati equations are often

used to solve and analyze the optimal control problem. If R is singular,.

then not all initial conditions admit continuous or nonimpulsive solutions.

It is of some interest to determine the continuous solutions. In [P6] non-

symmetric Riccati equations are derived for the free end point problem

that determine all continuous solutions. Numerical results are given

which suggest that these nonstandard Riccati systems may be numerically more

reliable than the more obvious Riccati equations. Why this occurs is dis-

cussed.

Of course, a second order singular system

MY" + Ck + Kx = f (5)

may be written as a first order system (2). However it is of some interest

to derive solutions in terms of M, C, K. In general this is quite difficult

and the general problem is still not satisfactorily solved. In large-scale

interconnected electric power systems, the damping matrix C is usually assumed

to have the form of Raleigh damping, that is, C = oM + aK. Also because of

restoring forces and the nonconservative nature o:f circulatory forces due to

transfer inductances, M and K are not only not necessarily symmetric but are

fairly arbitrary [RI]. In [P8], closed forms for the solutions of (5) with M

singular and C in the form of Raleigh damping are derived.

Singular systems arise frequently in applications. However, researchers

frequently are unaware of the work of others and as a consequence often
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must rederive a portion of what is already known. For example, work on

singular systems has been done under the names: descriptor, implicit,

algebraic, constrained, semi-state, singular, reduced order, and degenerate;

and in the fields of mathematics, systems theory, control theory, circuit

theory, economics, power-systems, numerical analysis, and biology. The

need for a research level monograph on nonlinear singular systems that would

tie together this work, have a comprehensive bibliography, and present new

results became apparent to the proposer. Accordingly [C3] was written during

1981. Most of the results of [P7], [P8] are not discussed in [C3].

Chapters 5 and 6 of [C3] contain some results, ideas, and applications

of this research effort that will not be published elsewhere. Accordingly,

these chapters (slightly modified) were made available in the form of the

reports [P3], [P4] to facilitate their distribution and utilization by the

U.S. Government research and development agencies.

Numerical experiments had shown that in those cases when a first order

method failed on (1) or the linear time varying problem

A(t)x'(t) + B(t)x(t) =f(t), (6)

that a second order method sometimes worked but not with second order accuracy

near points of higher index. Two results in [P3], [P41 shed light on this.

First, in [P4] it was shown that whether the system was nonsingular, index

one, or higher index was an invariant of the system under time varying co-

ordinate changes. Secondly, in [P3] it was shown that for (6) a second

order fixed step backwards difference scheme applied to essentially index

one systems was able to integrate through points of higher index provided

there were solutions through that point. Proofs were given and numerical
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experiments agreed with the predicted error estimates. It is current

numerical practice to use variable step methods on stiff equations which

are index one. However, near index changes there are advantages to fixed

step methods [C3], [R16], [R20] so that our analysis has concentrated on

determining the behavior of fixed step methods.

There seem to be four basic types of questions to consider for any

form of singular system.

Analytic Properties. Of course, there are the standard types of

questions present whenever differential equations are studied. When and

in what sense do solutions exist? For what initial conditions are there

solutions? How can these solutions be explicitly characterized? Can the

solutions be written in terms of solutions of explicitly given nonsingular

problems?

Numerical Solutions. Given that solutions exist, how can one compute

them directly from (1) as opposed to trying to solve (1) analytically and

then numerically computing that answer.

Regularization of (1) is the problem of determining an equation

F(e,k ,x ,t) = 0 (7)

so that F(Ok x ,t)= 0 is (I) and xE - x0, in some sense, as e - 0+.

System (7) is called a regularization or regularizing perturbation of (1).

If V G(x,y) is stable (eigenvalues have negative real part), the usual re-y

gularization of (3) is the traditional singular perturbation problem

FH(x,y )  (8)

G(x ,y E)
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In general, however, multiple time scale perturbations must be used [P91,

[P151. For the constant coefficient case (2) the pencil perturbation

(A + EB)k + Bx = f (9)

is always a regularizatiQn [R3], [R7]. This is not true for linear tjLme

varying systems [P9].

There is a large singular perturbation literature on what to do when

the equations are in the form

e1il 1l(Xl ' ' ' ' . Xr ' t ) '

m

Cr rk r fr 1( xI''Xr't)"

However, there is also the difficult problem of figuring out what the Ei$ m.1

are and getting the original equations into the form (10).

Regularization is the "dual" of this problem. Given the reduced problem,

how can the small parameters be put back in? Regularization is important in

understanding how singular systems are to be interpreted. Different types

of regularization, for example including "small" probalistic effects, can

even change what is to be called a solution [R17], [R18]. In some electrical

circuits the traditional way of introducing small parameters may not even

lead to a nonsingular system [R6], [P151.

The problem of regularization and its relationship to multiple time

scales is discussed at some length in (P14]. Several examples are given to

show how, even for linear time varying systems (6) the pencil perturbation

need not be a regularization.
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Form Variations. Systems will usually not be exactly in a specific

form. Therefore it is important to know what types of transformations do

not alter the basic properties of the form, and what systems are related

by these types of transformations to the form.

In [P14], it is also shown that if (6) is in a special type of time

varying form, denoted SCF, then the pencil perturbation is a regularization.

The SCF form is investigated in considerably more detail in [PI1]. In

[P11] a safe transformation on (6) is defined to be left multiplication by

an invertible time varying matrix function P(t) and a coordinate change x = Q

where Q is a constant invertible matrix. Not all systems (6) can be safely

transformed into SCF [P11]. In [P11], these systems that can be safely

transformed are characterized. They have several properties. First, the

pencil perturbation is a regularization. Second, the analytic solution is

given explicitly. In general, an implicit backwards difference scheme may

not work on (6) [C2]. However, in (Pll] it is shown that a fixed step

implicit backward Euler's method will work on systems which can be safely

transformed to SCF. This result may be extended to higher order methods

by extrapolation. In [R6], Newcomb gives an example of a circuit involving

a gyrator which is difficult to analyze by conventional means due to the

presence of several parasitics which still leave one with a singular system

in the form of (6). In [P15], this circuit is analyzed by the methods

developed in [Pll.

It is also of interest to develop analytic techniques which show how

the solutions of (6) depend on A,B. In (P9], the index two case of (6) is

solved analytically under a rank condition. This is the first solution of

this type to appear in the literature. The results of [P91 are applicable
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to a large number of systems that cannot be put into SCF and for which the

pencil rpgularization does not work. It is worth noting, that neither [P9] nor

[Pill] assume that A in (6) has constant rank or constant index.

One problem in which higher order singular systems often occur is the

reduced order model in a cheap control problem [Cl], [C2], [P7]. In [R15],

the linear control system:

x = Ax + Bu, x(O) = xo, 0 < t < ti , t1 > 0 (11)

nm
x, x E R , u E Rm with quadratic cost

t1

J1ux I T(t)Rx(t) + 1 uTRu + xTQx dt (12)

was studied. Here H, Q, R are real symmetric matrices. The controls were

m
real, bounded, and measurable with values in the positive orthant, R +. The

two essential assumptions were, R is "strictly co-positive";

There exists y > 0 so that uTRu> yuTu all u E Rm (13)

and "Assumption A";

iT T n (14)
min (-u Ru - y Bu) has a unique solution for ally E R n.

uER+

Conditions (13) and (14) do not appear to force R to be invertible. This

suggests that the approach of [R15] might be useful in studying "cheap

control" problems, that is, those for which R is singular. This possibility

was investigated in [PlO]. Unfortunately, it was shown that for almost all

cases of interest conditions (13) and (14) force R to be positive definite

and hence invertible.
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The verification that implicit, fixed step backwards difference schemes

work on constant coefficient systems [P20] and linear time varying systems in

SCF [P11] depends on the existence of a canonical form. Even if the trans-

formation to SCF alters the numerical properties of the system, the properties

of the SCF developed in [PI] combined with information on the transformation

may suggest modifications on the difference schemes that will enable them to be

applied to the original system (6).

With these ideas in mind Gear and Petzold have been examining canonical

forms for singular linear time varying systems [R9], [RIO], [RII], [Rl6].

The form SCF developed in [P11], [P14] is considerably more general than the

one suggested in [R9], [RIo] and includes more systems of interest while

maintaining the properties of interest. Also [R9], [RIO] do not anticipate

the value of considering safe transformations. There is also an error in

[RIO] which is corrected in [P12].

On a more theoretical level, there had not been much success in proving

the existence or the uniqueness of solutions to (1) in higher index cases by

functional analytic methods (fixed point theorems and contraction mappings),

although some work had been done on the essentially index one case [R4],

[R5]. The difficulty is that the standard Banach spaces and norms rarely

work.

The principal investigator and a colleague, J. Rodriquez examined these

questions. For the continuous case they developed a family of Banach spaces

on which it was possible to construct contractions [P18]. The special

structure required by these mappings helps explain why the traditional

approach has met with limited success. For discrete nonlinear singular

systems the situation is quite different [P17]. It is shown in [P17] that
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not only do solutions exist on infinite time intervals but they may be

approximated, up to a discrete boundary layer, by the solution of a finite

time problem.

With the discovery that backward differences need not work on higher

index problems, two impoitant questions have been addressed. One has'been

to show that for certain classes of applications that the backward differences

will converge. Positive results in this direction have recently been derived

in [R21, [RllJ, [R121, [R131. The other question is the search for a numerical

method that will work even when the backward differences do not. The first

such method for the linear time varying problem was developed in [P13].

This method, which is a type of Taylor series method,works in all cases for

which the linear time varying system is known to be solvable. The analysis

of this method and the best way to implement it are still under investigation.

At each step it is necessary to solve a singular linear system in the least

squares sense. Recently it has been found that some of the coefficients of

this system can be estimated to lower accuracy [P19].

The considerations which effect the choice of numerical method for a

solution of an implicit differential equation in a particular application

are discussed in [P16].
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Summary of Research Accomplishments

While there were several results derived during this contract, the

major achievements may be summarized as follows.

1. The introduction and beginning analysis of the first general

numerical method for the solution of (6), [P13], [P16], [P19].

2. A better understanding of what causes backward differences to

fail to converge [P1], [P2], [Pll.

3. A better structure theory for singular linear time varying and

non linear systems [P3], [P4], [P9], [Pll], (P12], [P14], [P15], [P17],

[P18].

4. A beginning development of the interconnection between singular

perturbations and backward differences for higher index problems [Pll],

[P14].

5. The application of singular systems to control and circuit problems

of interest to the engineering community [P4], [P6], [P7], [P8], [Pl0],

[P15], [P16].

6. The development of explicit solutions for the analysis of particular

problems and the testing of numerical methods [P9], [Pll].
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TRAVEL

The paper [P1] was presented at the Fifth International Symposium on the

Mathematical Theory of Network and Systems, Santa Monica, California, 1981.

At this meeting, the proposer first became acquainted with the work of Sastry,

et. al. [R17], [R18]. This very interesting work showed.-that for index one

non-linear systems that whether one used the type of solutions provided by

the proposer's work or used a different type of solution depended on the

relative importance of noise vs. parasitics. The usual theory of stochastic

differential equations is not immediately available for singular systems of

higher index but preliminary work is underway to try and determine if there

is a viable theory for stochastic systems of index higher than one and if

this theory can be used to analyze noisy descriptor systems.

Project funds were used to partially pay for a two and one-half week

trip in July of 1982. The remaining funds came from North Carolina State

University and the principal investigator. The trip had two primary pur-

poses. One was to talk with and commnunicate results to electrical engineers

and applied mathematicians interested in the types of problems being con-

sidered in this project. The second was to acquire additional insight

into how these problems and the related problems of singular perturbations/

reduced order modelling fit into current engineering theory and practice.

The trip encompassed two formal meetings and one informal one. The

first formal meeting was the "Seminar on Singular Perturbations in Systems

and Control" sponsored by UNESCO and IFAC and held at CISM (International

Centre for Mechanical Sciences) in Udine, Italy. This meeting consisted

of four, two hour talks a day and same discussion. The talks were all in

depth and expository but at a fairly advanced level. The second formal meeting

was the "IFAC Workshop on Singular Perturbations and Robustness of Control
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Systems" which was held in Ohrid, Yugoslavia. The emphasis of this meeting

was on recent research. An early version of [P14] was presented as an invited

paper. There were a large number of participants interested in the types of

questions discussed in [P14]. Both of these meetings were fairly intensive

with many talks scheduled. A more relaxed and informal gathering was held

at the Hotel Croatia in Cavtat, Yugoslavia, during the period between the

two meetings. Many (25-30) participants of both meetings took part in this

informal meeting.

The paper [P12]1 was presented at the 1983 Society for Industrial and

Applied Mathematics (SIAM) National Meeting in Denver, Colorado, in June,

1983.

The paper [P15] was presented as a regular paper at the 1983 IEEE

Conference on Decision and Control in San Antonia, Texas, in December.

This meeting is jointly sponsored by SIAM.

Finally, [P16] was presented as an invited paper in the "Solution of

Equation Systems" Session at the 1984 Simulators Miniconference in Norfolk,

Virginia. This meeting gave an opportunity to discuss the results of this

contract with a large group which is actively involved in the numerical

modeling of flight, control, and process systems.
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OTHER PROJECT PERSONNEL

Research Assistant:

Throughout the contract period, the research assistant was Mr. Kenneth Clark.

Mr. Clark has a B.S. in Mathematics and an M.S. in Operations Research (both

at NCSU) and is a Ph.D. candidate in Applied Mathematics~at North Carolina

State University. His thesis advisor is the principal investigator. Mr.

Clark performed literature searchs, programmed and ran most of the numerical

studies, performed some of the more routine calculations, and provided an

informed colleague to discuss the research with. During the last year of

this contract he has been actively engaged in research on the relationship

between regularization and convergence of implicit backward differences for

implicit differential equations.
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